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Abstract 

We consider left coflat monomorphisms of coalgebras, and establish a l-1 correspondence 
between the set of isomorphism classes of left coflat monomorphisms, the set of some coidem- 
potent subcoalgebras and the set of equivalence classes of perfect localization bicomodules as 
well. @ 1998 Elsevier Science B.V. All rights reserved. 

1991 Math. Subj. Class.: 16W24 

0. Introduction 

In this paper, we consider coflat monomorphisms of coalgebras. These are dual to the 

perfect localizations of algebras (or the flat epimorphisms of algebras). If 4 : C - D 

is a left coflat monomorphism of coalgebras, then 4 determines a Morita-Takeuchi 

context 

(CT Q CUD, DCC, f, $7) 

and the bicolinear map f is an isomorphism. It follows that C is quasi-finite as a left D- 

comodule, and the coendomorphism coalgebra of the left D-comodule DC is canonically 

isomorphic to C (cf. Theorem 3.4 and Corollary 3.5). It has been shown in [2] that 

a left coflat monomorphism 4 : C - D of coalgebras determines a hereditary torsion 

theory Ker(-)+, (-)b = - q DC, of the comodule category MD, and any hereditary 

torsion theory is uniquely determined by a coidempotent subcoalgebra A of D. It is 

natural to ask what conditions on A allow to reconstruct the coflat monomorphism 4. 

This leads us to define localization bicomodules of a coalgebra D in Section 2. We 
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show that coidempotent subcoalgebras of D bijectively correspond to localization bico- 

modules. This correspondence yields a l-l correspondence between left coflat mono- 

morphisms and the so-called left perfect localizations which precisely answers the 

question. 

1. Preliminaries 

Throughout, k is a fixed field. All coalgebras, algebras, vector spaces, and unadorned 

LB’, Horn, etc. are over k. Throughout, /i, r, C and D always stand for coalgebras. 

The character M indicates the category of k-modules. We refer to [4] for detail of 

coalgebras and comodules. If C is a coalgebra, we denote by MC the category of 

right C-comodules. Similarly, we let CM stand for the left C-comodule category. 

A right C-comodule X is injective (or C-injective) if the functor Corn-&,X) is 

exact. 

A C-D-bicomodule is a left C-comodule and a right D-comodule X, denoted by c&, 

such that the C-comodule structure map pc : X - C@X is D-colinear, or equivalently 

the D-comodule structure map pD :X ---+ X @D is C-colinear. In particular, C is a 

C-C-bicomodule through A. 

Cotensor product. For a right C-comodule M and a left C-comodule N, the cotensor 

product M q c N is the kernel of 

The functors M 0~ - and - q cN are left exact and preserve direct sums. If A& and 

cYr are bicomodules, then X •~ Y is a LI - r-bicomodule induced by the structure 

maps: pn:X - n @X and pr: Y --P Y 8 r. The cotensor product is associative. For 

comodules Xc and CY the structure maps px and py induce C-colinear isomorphisms 

X N X 0~ C and Y N C q cY. If X is a right C-comodule which is finite dimensional 

as vector space, then the dual X* is a left C-comodule with structure map 

X* - Com_c(X,C) -+ Horn&C) z C 8X*, x* H (x’ 8 l)px. 

If Y is a right C-comodule, then we have the canonical isomorphism 

Y q cX* N Com_c(X, Y). (1) 

If, moreover, Y is a D-C-bicomodule, then Corn_&, Y) is a left D-comodule induced 

by (1). A right C-comodule Y is called a coflat comodule if the Iimctor Y c]c - is 

exact. Since every comodule is the union of its finite-dimensional subcomodules, it 

follows from (1) that Yc is coflat if, and only if, Com_c(-, Y) is exact if and only 

if Y is C-injective, cf. [6]. 

Co-horn functor. A comodule Xc is quasi-finite if Com_c(Y,X) is finite-dimensional 

for every finite-dimensional comodule Yc. We recall from [5] the definition of the 

co-horn mnctor and some of its basic properties. 
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Basic lemma. Let c_& be a bicomodule. Then & is quasi-$nite if and only if the 
functor - q cX : MC - MD has a left adjoint functor, denoted by h-&C, -). That 
is, for comodules YD and WC, 

com_c(h_D(X, Y), w) !? com_D(Y, w q C x). (2) 

Assume that & is a quasi-finite comodule, then e-o(x) = h-_&X,X) is a coalge- 

bra, called the co-endomorphism coalgebra of X. The comultiplication of e-D(x) cor- 

responds to (1 @ 6)6:X + e-D(x) 18 e-D(x) (8 X in (2) when C = k, and the 

counit of e-D(x) corresponds to the identity map lx. x is an e-D(X) -D-bicomodule 

with the left comodule structure map 8 given by the canonical map X - h-&,X) 

RX. 

Morita-Takeuchi (M-T) context. An M-T context (C, D, CPD, DQC, f, g) consists 

of coalgebras C, D, bicomodules CPD, DQC, and bicolinear maps f: C - P q 0 Q 
and g: D - Q q C P satisfying the following commutative diagrams: 

P N PI-JDD Q a QDcC 

The context is said to be strict if both f and g are injective (equivalently, isomor- 

phic). In this case, we say that C is M-T equivalent to D. Let PD be a quasi-finite 

comodule and C = &D(P). Then CPD is a bicomodule. Set DQC = h_D(P,D), g = 

0: D - Q •~ P, and f : C = h_D(P,P q 0 D) LP &, h-D(P,D) = P q 0 Q. 
Then (C, D, CPD, DQC, f, g) is an M-T context, where f is injective if and only 

if PD is injective, and g is injective if and only if PD is a cogenerator in MD, 

cf. [5]. 

Let 4 : C - D be a coalgebra map. Every right C-comodule X may be viewed as 

a right D-comodule with the structure map 

(1@4)p:X-X@C-X@D. 

In this case, we will say that XC restricts to the right D-comodule &. The map 4 

induces a left exact (restriction) functor: 

(-)6 : MC -MD. 

Let us recall from [2] the relation between monomorphisms of coalgebras and tor- 

sion theories in a comodule category. A coalgebra map I$ : C -D is said to be a 

monomorphism if it is a monomorphism in the coalgebra category Co&. Let (-)@ be 
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the cotensor functor 

MD - MC, M++MODC. 

Theorem 1.1 (Nastasescu and Torrecillas [2, Theorem 3.51). Let g5 C -D be a coal- 
gebra map. The following are equivalent: 

(1) 4 is a monomorphism in Cogk. 
(2) C On Ker4 = 0. 

(3) The canonical morphism d : C - C q 0 C is an isomorphism. 
(4) The restriction functor (-)4 : MC - MD is full. 
(5) The canonical functorial morphism I MC --+ (-)# o (-)b is an isomorphism. 

Note that conditions (4) and (5) in the above theorem may be replaced by the left 

comodule versions since condition (3) is symmetric. Let D be a coalgebra, MD the 

comodule category. A subcategory Q? of MD is a closed subcategory if % is closed 

under subobjects, quotient objects and direct sums. If, in addition, % is closed under 

extensions, then % is called a localizing subcategory. We refer to [3] for detail on 

(hereditary) torsion theories. A subcoalgebra A of D is said to be coidempotent if 

A=AAA=Ker(DLD/A@D/A). 

Theorem 1.2 (Nastasescu and Torrecillas [2, Theorems 4.2, 4.51). Let D be a coalge- 
bra and A be a subcoalgebra of D. We denote by FA = (A4 E MDJp~(M) GM @A}. 
Then 

(1) YA is a closed subcategory of MD. 

(2) The map A H FA is a bijective map between the set of all subcoalgebras of D 
and the set of all closed subcategories of MD. 

(3) A H JcA gives an one-to-one correspondence between the set of coidempotent 
subcoalgebras of D and the set of localizing subcategories of MD. 

(4) All the localizing subcategories of MD are hereditary torsion theories. 

Note that the theorem still holds if one considers the left comodule category DM. 

Let 4: C - D be a coalgebra map. C$ is said to be a left coflat monomorphism if 

4 is a monomorphism and the comodule DC is coflat. Let 4 be a left coflat monomor- 

phism. The canonical functor: 

(-)“:MD-MC, Xb’XnDC 

is an exact functor that commutes with direct sums. It follows that the kernel Ker(-)4 = 

Y is a localizing subcategory of MD. By [2, Theorem 4.51 there exists a unique 

coidempotent subcoalgebra A of D such that 

Let us denote it by &. Since FA is closed under products FA is a hereditary torsion 

theory and it is a TTF class. Note that A is a subcoalgebra of D. Hence, AT is a 

hereditary torsion theory and a TTF class in DM. 
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2. Localization bicomodules 

In this section, we define (perfect) localizations and show that any left coflat mono- 

morphisms 4 : C - D of coalgebras comes from some coidempotent subcoalgebra of 

D. There is ono-to-one correspondence between the set of left coflat monomorphisms 

to D and the set of equivalence classes of perfect localization bicomodules. 

Let D be a coalgebra. By a localization bicomodule, we mean a pair (U, II/) of a 

D-bicomodule U and a D-bicomodule map _$ : D -+ U such that UOolc/ and $OoZJ 

are isomorphisms. 

First, we establish a correspondence between localization bicomodules of a coalgebra 

D and coidempotent subcoalgebras of D. 

Lemma 2.1. Let (U, $) be a localization bicomodule of D. Then Ker$ is a coidem- 
potent subcoalgebra of D. 

Proof. A = KerII/ is a subcoalgebra since t+!t is D-bicolinear. Let % be the category 

MA of right A-comodules. If X E MD, then X E s if and only if X q 0 U = 0. 
Indeed, if X E &, then X q 0 U ? X lJA A q 0 U = 0 since A q 0 U = 0. Conversely, 

ifXnDU=O,thenXn~A?X,andX~~.LetO-X-Y-Z-O 

is an exact sequence in MD such that X,Z are in z, then X q 0 U = 0 = Z q 0 U. 
This implies that Y 00 U = 0, and Y is in &. This means that % is closed under 

extension. By [2, Theorem 4.51 A is a coidempotent subcoalgebra of D. 0 

Lemma 2.2. Let (U, $) be a localization D-bicomodule, A the coidempotent subco- 

algebra KerII/. Zf X z Y is a left (or right) D-comodule map, then Kerf, Coker f 
are in AF (or 5~) if and on/y if U 00 f (or f q DU) is an isomorphism. 

Proof. By the argument in the proof of Lemma 2.1, a D-comodule is torsion (or in 

Ay) iff U q 0 X = 0. Since Kerf is torsion, we have U 00 Kerf = 0 and hence, 

U q 0 f is injective. To show that U !& f is surjective, we may assume thet f is 

surjective since U q 0 f(X) = U 00 Y (because U q 0 Coker f = 0). Now, the map 

$oDX:X-u,-,DX 

restricts to zero on Kerf since Kerf is torsion and U q 0X is torsion free as left 

D-comodules. Hence, it factors through f, and we may write 

+ooX=hof, h:y--,UODX 

Thus, we obtain 

Hence, U q 0 $ q 0 Y = (U 00 U 00 f) o (U 00 h). But this is an isomorphism 

since U q 0 $ is. It follows that U 00 U 00 f iS SUrjeCtiVe. Since U N UOD U as 
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D-bicomodule, we obtain that U 00 f should be surjective, and we conclude that 

U 00 f is an isomorphism. 

Now, let 0 -+ Kerf - X L Y --+ Coker f --+ 0 be an exact sequence of 

left D-comodules such that U 00 f is an isomorphism. Since U 00 - is a left exact 

functor U 0 Kerf = 0, that is, Kerf is torsion. For any object X gD M, we have a 

left D-colinear map & = II/ q 0X : X - U~DX. Since UIJD& is an isomorphism, 

Ker 1,9x is torsion. Consider the following commutative diagram: 

0= UnDKerf + UIJDX “o_f UFJDY z UODCokerf 

hwj *xl 1 tiy] p ;;I 

0 F Kerf h X F Coker f - 0 

Since U q 0 f is an isomorphism, U q op should be zero. It follows from the above 

diagram that $cOkCokerf is zero. But the kernel of ke,kerf is torsion, and hence, Coker f 

is torsion. 0 

For hereditary torsion theory 3, one may form a quotient category MD/%, denoted 

by MD. Let (TA,SA) be an adjoint pair of canonical functors. We have 

Lemma 2.3. The section functor SA : MD/T~ -+ MD preserves direct sums and 

quasi-Jiniteness. 

Proof. Let {Xi} be a family of objects in MD/FA. We have the canonical map 

0 - @s,&)%4(@x)~ 
i i 

where CI is injective since Ker a is torsion and ei So is torsion free. Suppose that 

a is not surjective. Since MD is locally Noetherian, there exists a set of Noetherian 

generators { vj}. If the monomorphism a is not epic, then there is some VI E { 5) 

and a non-zero morphism f : VI - SA(& Xi) such that f cannot factor through a. 
However, since I$ and TA( VI) are Noetherian, we have 



B. Torrecillas et al. I Journal of Pure and Applied Algebra 128 (1998) 171-183 177 

where Horn means the Horn in MD/&. It follows that f factors through a, a contra- 

diction. So a is an isomorphism. Note that SA is a right adjoint functor of TA and TA 
preserves objects of finite dimensions. These facts yield that SA respects quasi-finiteness. 

0 

Lemma 2.4. Let A be a coidempotent subcoalgebra of D. Then SAT,(D) together 
with the canonical adjunction map $1 D -+ S, TA(D) is a localization bicomodule. 
Moreover, by symmetry, (ASA T(D), $‘) is a localization bicomodule and there is a 
bicolinear isomorphism 8 : SA TA(D) - A&T(D) such that $’ = 8 o II/. 

Proof. Let A be a coidempotent subcoalgebra of D. The localization functor SATA : 
MD - MD is a let? exact mnctor and preserves direct sums by Lemma 2.3. So it is 

of form - q oU for some D-bicomodule U by [5, 2.11. In this case, the adjunction 

11/ : In ---+ SATA is represented by a D-bicomodule map II/ : D - U. Since a comodule 

X is torsion if and only if SAT,(X) = 0, we obtain that X is torsion iff X 00 U = 

0. Now Ker$ and Coker $ are torsion. By Lemma 2.2, we obtain that $ 00 U is an 

isomorphism. To show U&J/ is also an isomorphism, we consider the difference map 

f =uoDrl/-$~Du: udu~Du, 

which is obviously right and left D-colinear. It is clear that f o JI = 0. So f factors 

through Coker 11, which is torsion. Since U 00 U is torsion free as a right D-comodule, 

any right D-colinear map from Coker $ to U q 0 U should be zero. It follows that 

f = 0. Therefore (U, @) is a localization 

By symmetry, (ASAT(D) is a localization bicomodule. Let U’ be ASAT. Since 

Ker $’ and Coker $’ are in AT-, B y Lemma 2.2, we obtain that U q n $: U --+ 
U q n U’ is a bicolinear isomorphism. By symmetry, II/ 0 U’ is a bicolinear isomorphism 

too. Let Q be ($ 0 U’)-1 o (U c] t+k’). Then 8 : U - U’ is a bicolinear isomorphism 

such that II/’ = 0 o $. 0 

From the proof of Lemma 2.4, we obtain that $0 U = U 0 $ if (U, $) is a 

localization bicomodule. Two localizations (U,$) and (U’,$‘) are equivalent if there 

exists an D-bicolinear isomorphism p : U - U’ such that II/ = $‘n. Let L be the set 

of equivalence classes of localization bicomodules of coalgebra D. Denote by %? the 

set of coidempotent subcoalgebras of D. Now we are allowed to define two maps @ 

and Y as follows: 

- @: L--+---t; (U,ll/)++Ker$, and 

- Y: %? - L; A H SATA( where SATA is the localizing functor associated to A. 

Theorem 2.5. Let D be a coalgebra. The maps @ and Y defined as above are iso- 
morphisms and inverse to each other. 

Proof. Given a coidempotent subcoalgebra A of D, we have to show that Y@(A) = A. 

Let SATA be the localizing ftmctor with respect to the torsion theory z, and let 
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$: D ---+ U = SATA be the representing bicolinear D-map. We have to show 

that Ker$ = A. We know that KerII/ is a subcoalgebra of D which is torsion, i.e, a 

right A-comodule. This implies that Ker $ c A. On the other hand, Ker $ is the max- 

imal torsion subcomodule of D since $ is the adjunction map. But A is obviously a 

torsion subcomodule of D. It follows that A C KerII/. Therefore, A = Y@(A). 
Conversely, suppose that (U, 4) is a localization bicomodule of D. A = Ker4 is 

a coidempotent subcoalgebra. Let SATA be the localizing functor with respect to the 

torsion theory s. Let $: D - SATA be the adjunction map with which Coker II/ 

and Ker$ are torsion. By Lemma 2.2, $ 0~ U is an isomorphism. On the other 

hand, (SATA(D),$) is a localization bicomodule, and Ker4, Coker 4 are torsion by 

Lemma 2.2, we have that S, TA(D) 00 4 is an isomorphism by Lemma 2.2. This gives 

bicolinear isomorphism from U to SA TA(D), and hence @Y([U]) = [U], where [U] 
represents the equivalence class of U. 0 

A localization bicomodule (U, $) is called a left perfect localization if U, is quasi- 

finite and injective as a right D-comodule. 

Let (U, II/) be a left perfect localization. Since UD is quasi-finite and injective, by 

[5, 2.51 we may associate an MT-context to U, 

(c, D, CUD, DQC, f, 9) 

such that f : C ? U q 0 Q, where C = e_D( UD). The bicomodule structure of DUD 
induces a coalgebra map 4 : C - D. It is easy to check that $00 C : C --+ UOD C 
is the following composite D-bicolinear isomorphism: 

f c-u 
WUOQ 
-UODUOD 

UUf--’ 
Q- U [7Dc. 

We show that 4 is a left coflat monomorphism 

Lemma 2.6. Let (U, $) be a left perfect localization and let C = e,(U), q5 : C - D 
the induced coalgebra map. Then (C, D, cl..J D, DCC, F, G) is an MT-context and F 
is an isomorphism, where F = $ q 0 C, G = $, 

Proof. It is enough to show that F, G are compatible. One may see that U 00 G = 
F&U follows from the fact that UOD$ = $ODU. To check that COcF = GODC, 
we compute that, c E C, 

(CO&‘)(c) = c C(I) q Ic F(qz)) 

= &I) DC ‘k&c(Z)) 00 c(3) 

= c Ic/4(c(1)) 00 c(2) 

= (G 00 c)(c). 0 
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Proposition 2.7. Let 4 : C -+ D be the coalgebra map as above. Then 4 is a left 
cojlat monomorphism. 

Proof. That 4 is a left coflat map follows from Lemma 2.6 and [5, Theorem 2.51. Let 

X be in CM, we have an isomorphism in ‘M 

since ($ q 0 C) •~ X is a left C-isomorphism. If X, YE CM and h : X - Y is a 

D-comodule map, then it is a C-comodule map since the following diagram commutes: 

*0LJ 
x - UaDx 

Hence the fixrctor (-)b : ‘M dDM is full so that 4 is a monomorphism by 

[2, Theorem 3.51. 0 

3. Coflat monomorphisms 

In this section, we investigate left coflat monomorphisms of coalgebras, and estab- 

lish a bijective correspondence between left coflat monomorphisms and left perfect 

localization bicomodules. First, we have an easy observation: the functor of direct sum 

preserves coflat monomorphisms. That is, 

Proposition 3.1. If Fi : Ci - Di are left coJEat monomorphisms of coalgebras, then 
ei : ai Ci - ei Di is a left cojat monomorphism. 

Proof. Straightforward. 0 

Lemma 3.2. Let 4 : C - D be a left coyat monomorphism of coalgebras, and AY 
the corresponding torsion theory. 

(1) Any left C-comodule X is torsion free as a left D-comodule. 
(2) A comodule CX is C-injective if and only if fi is injective as a D-comodule. 
(3) The torsion theory AY is cogenerated by DC. 

Proof. It is enough to show that DC as a left D-comodule is torsion free since any 

left C-comodule as a left D-comodule is still cogenerated by DC. To show that DC is 

torsion free, it is sufficient to check that COInD_(F, C) = 0 for any finite dimensional 

object F EAT because AF is hereditary and any comodule is locally finite. But we 
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have 

ComD_(F, C) II F* i-Jo C = 0, 

where F* is a right A-comodule in yA. 

(2) Suppose that cX is an injective comodule. Then there exists some set Z such 

that cX@c Y = Cc’). Observe that the restriction fimctor (-)# : CM - DM is exactly 

the cotensor mnctor C q c - which is exact. It follows that fl@, Y =D Cc’). Now 

since DC(‘) is injective Dx is injective. Conversely, if a left C-comodule X as a 

left D-comodule is injective, then there are some set J and D-comodule Z such that 

DX @ Z = DcJ). Now after cotensoring by CD we obtain 

as left C-comodules. But $ is a monomorphism. By [2, Theorem 3.51 cX 21 C q oX 

as left C-comodules. It follows that CX is injective. 

(3) Follows from the proof of (1). 0 

Let $J : C ---+ D be a left coflat monomorphism. Let % be the kernel of - q DC. 

By Theorem 2.5 we may identify A with (U,$), where U = SATA(D),IC/ = $D. In this 

case, the D-bicomodule C plays the role of U in Lemma 2.2. That is, if f : X --+ Y is 

a map in MD, then Kerf, Coker f are in z iff f 00 C is an isomorphism. It follows 

from COD C !% C that Ker4 and Coker 4 are torsion relative to 5. 

Lemma 3.3. Let 4: C - D be a left cojlat monomorphism. 
(1) U may be furnished into a (C,D)-bicomodule. 
(2) fA = $ q 0 C : C - U q 0 C is a C-bicolinear isomorphism. 

Proof. By forgoing remark, Ker4 and Coker 4 are torsion. It follows from Lemma 2.2 

that 4 q 0 U : C 00 U - U is a D-bicolinear isomorphism, which gives U a left 

C-comodule structure. The second statement follows immediately from the fact that 

$ 00 C factors as 

clDmoc 
t+b,,&: c-h&c- C&U q DC’=UODC. 0 

NOW let fA = $ ,,D C and gA = $. It iS eaSy to See that fA &U = UoDgA fdows 

from $ q 0 U = U 00 $ (because (U, $) is a localization). C q C fA = g 00 C is 

trivial. Thus we have proved the following: 

Theorem 3.4. Let 4 : C - D be a left cojlat monomorphism. Then (C, D, CUD, DCC, 
fA, gA) forms a Morita-Takeuchi context. Moreover, fA is an isomorphism and 
KergA = A. 

Corollary 3.5. Let 4 : C - D be a left cojlat morphism, U as above. Then 
(1) DC is a quasi-jnite (injective) comodule. 
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(2) C E co_(C) E e-o(U) us coalgebras. 
(3) (u,I+!I) is a left perfect localization bicomodule. 

Proof. It follows from [5, Theorem 2.51. 0 

Now we are able to establish a correspondence between left perfect localizations 

and left coflat monomorphisms. Two coalgebra maps u : C ---+ D and v : E --+ D are 
isomorphic if there is a coalgebra isomorphism h : C - E such that u = vh. 

Theorem 3.6. Let D be a coalgebra. There is one-to-one correspondence between the 
set of isomorphism classes of left cojlat monomorphisms 4 : C - D and the set of 
equivalence classes of left perfect localizations (U, +) in DM. 

Proof. Let 4: C - D be a left coflat monomorphism. By Corollary 3.5, (U = 

SATA( ll/o) is a left perfect localization bicomodule, and C’ = e-D(U) g C. Let 

4’ : C’ ---+ D be the induced coalgebra map by bicomodule DUO. It is clear that fl is 

isomorphic to 4. 

Conversely, let (U, tj) be a left perfect localization. Let 4 : C - D be the resulted 

left coflat monomorphism in Proposition 2.7, where C = e-D(u). Let A = Ker+ and 

A’ be the coidempotent subcoalgebra corresponding to the torsion theory Ker(- l-&C). 

To show that (U, $) is equivalent to (&TA,$D), it is equivalent to show A = A’ by 

Theorem 2.5. Since coidempotent subcoalgebras bijectively correspond to hereditary 

torsion theories in MD, it is enough to show & = &. In fact, if X E MD, x00 C = 0 

implies x q 0 u = (x00 C) q C u = 0. Conversely, if x q 0 u = 0, then x00 C 2: 

X q 0 (U 0 Q) = 0, where Q = h_D( U,D). Thus we obtain that X 00 U = 0 iff 

X00 C = 0. That is, s = TAG. 0 

Now we are able to show which coidempotent subcoalgebras correspond to left coflat 

monomorphisms. 

Corollary 3.7. Let D be a coalgebra. There is a one-to-one correspondence between 
the set of isomorphism classes of left cojIat monomorphisms 4 : C - D and the set 
of coidempotent subcoalgebras A such that D/A is quasi-jnite as a right D-comodule 
and the localizing functor ASAT (equivalently AS) is exact. 

Proof. It is enough to show that a localization bicomodule (U, $) is perfect if and only 

if D/A is quasi-finite and ASA T is exact for coidempotent subcoalgebra A = Kerll/. By 

Lemma 2.2 (ASAT( $‘) is equivalent to (2 SATA( $). Since ASAT is isomorphic 

to the cotensor ftmctor ASA T(D) q n -, ASA T is exact if and only if ASA T(D) is injective 

as a right D-comodule. In this case SATA 2 ASAT is a injective hull of D/A. So 
SATA is quasi-finite if and only if D/A is quasi-finite. q 

Remark 3.8. The categorical translation of quasi-finiteness of D/A is that the canonical 

functor TA has a left adjoint functor. Indeed, T* is isomorphic to TA(D)OD -. So TA 
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has a left adjoint functor if and only if TA(D) is quasi-finite in MD which is abelian 

category of finite type. For a torsion-free comodule X E MD, TA(X) is quasi-finite iff 

& is quasi-finite. Since TA(D) Y TA(D/A) and D/A is torsion free. It follows that TA 
has a left adjoint fimctor iff D/A is quasi-finite as a right D-comodule. 

Finally, we will see a left coflat monomorphism 4 : C - D determines a categorical 

equivalence between CM and DM as well as it results in an equivalence between MC 

and MD [2]. Consider the hereditary torsion theory AY in DM. We may form the 

quotient category DM/~F, denoted by DM. Let (AT,A S) be the canonical adjoint pair 

of functors between DM and DM. The following proposition is the left version of the 

equivalence in [2, Theorem 6.11. 

Proposition 3.9. Let 4 : C --+ D be a left coflat monomoruhism. The following com- 
posite functors define an equivalence 

L 

between CM and DM: ” - 

C-)0 AT )_ 
‘M e DM <p DM. 

Proof. Let F = AT o (-)4. It is clear that F is a left exact hmctor and preserves direct 

sums. So F N F(C) q C -. Since DC is a torsion free and injective object we have 

that DC N &SAT(C). Let V = AT(DC). We claim that V is a cogenerator in DM. In 

fact, VX E DM, there is a non-torsion C-comodule X’ such that AT(X’) = X. Since 

DC cogenerated the torsion theory AT, we have 

Hom(X, V) = Hom(AT(X’), V) N ComD_(x’, ,& V)) E ComD_(x’, C) # 0, 

where Horn are taken in DM. Since DC is torsion free and injective, V is an injective 

object in DM. A similar argument shows that V is a quasi-finite object in DM. Now __ 
we may copy the argument of [5, 5.1-5.1 l] to get an equivalence between DM and the 

comodule category EM, where E = hm( V, V) is a coalgebra and the cohom functor 

h,M\V, -) induces the equivalence. By the adjoint isomorphism and Corollary 3.5 we 

have 

h,M\V, v) 2 hD_(C,C) = c. 

It is clear that the inverse functor of the cohom flmctor is exactly the cotensor functor 

V& -. But V = F(C) and hence F = V’~C -. It remains to show that the cohom 

functor h,M\V, -) is isomorphic to the composite functor G = (U 00 -)oaS. It is 

enough to show that G is a 1eR inverse of functor F. Indeed, for any M E ‘M, 

~MIICOCM~UODCOCM”UODM. 

View M as a left D-comodule. We have an exact sequence 

0 --+ Ker$M + M 2 ASAT - Coker $M - 0. 
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Note that a left D-comodule X is torsion if and only if U q 0 X = 0 Applying the 

exact functor UnD - to the above exact sequence, we arrive at the isomorphisms: 

cM ? UnoM = UnD, .4&T(DM) = GiWf), 

and the proof is complete. 0 
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